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Note: This is a preliminary version. I will update it soon. If you have comments or questions, feel free to
email me at soumendu@berkeley.edu.

In this note we will discuss the IPL auction in detail. First, let us recall the mechanism of the IPL auction.

The Indian Premier League (IPL) is a professional cricket league, where different franchises own teams
that contest each other. Before the start of each season, an auction is run to distribute players into teams.
There is a large pool of players, and each of them is sold to franchises via an auction. For a particular player,
there is some base price $m. First an English auction is run. If the bid does not reach $m, the English
auction determines the winning franchise. On the other hand, if the bid reaches (or exceeds) $m, then a
sealed-bid first price auction is run among the remaining participants, and the highest bidder gets the player
at its bid.

Fix a player. Let us assume that there are n franchises with values V1, . . . , Vn ∼ F . Let (β
(1)
1 , β

(2)
1 ),=

· · · = (β
(1)
n , β

(2)
n ) = (β(1), β(2)) be optimal bidding strategies for the first and the second stages. Then let us

compute the allocation probabilities first. Note that there are two contingencies: (a) the first-stage English
auction determines the winner, and (b) the second-stage first price auction determines the winner.

Note that (a) occurs iff maxk Vk < m and (b) occurs iff maxk Vk > m. Therefore the allocation probabil-
ities are given by

ai = P(β(1)(Vi) > max
k 6=i

β(1)(Vk),max
k

Vk < m)

+ P(β(2)(Vi) > max
k 6=i

β(2)(Vk),max
k

Vk > m)

= P(β(1)(Vi) > max
k 6=i

β(1)(Vk)|max
k

Vk < m)P(max
k

Vk < m)

+ P(β(2)(Vi) > max
k 6=i

β(2)(Vk)|max
k

Vk > m)P(max
k

Vk > m).(1)

So, if we are given the joint distribution F , we can in principle find out the allocation probabilities using the
above expression. We also need to identify the optimal bidding strategies in the process.

Now note that conditioned on the event that maxk Vk < m, we need only worry about the first stage
English auction and similarly, if maxk Vk > m, then only the second stage first price auction is of concern.

To deal with the English auction, we make the following important observation.

Observation. If the increments in bids are small compared to the values of participants, then an English
auction is approximately like a second price auction.

To see this, suppose that the current bid is b and only two participants (with values v1 and v2 such that
v1 > v2 > b) are willing to pay. Then if the auctioneer increases the bid to b + ε where ε is very small
compared to v2 and b + ε > v2, then the second participant walks away, and the first participant wins the
auction at price b + ε ≈ v2 (note that 1 < b+ε

v2
6 1 + ε

v2
). Finally, in English auction, the best strategy for

a participant is to hold on until the current price exceeds his/her value. So, at the end, everyone “bids”
truthfully. So we will take β(1)(v) = v.

Therefore, the first term in (1) boils down to

(2) P(Vi > max
k 6=i

Vk|max
k

Vk < m)P(max
k

Vk < m)
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To handle the second term, we need to know F , because β(2) depends on F . In what follows we will

assume that 0 < m < 1 and V1, . . . , Vn
i.i.d.∼ Uniform(0, 1). We will use the following result:

Result. If V1, . . . , Vn
i.i.d.∼ Uniform(0, 1), then given that maxk Vk < m, V1, . . . , Vn

i.i.d.∼ Uniform(0,m).

Proof. Note that for v1, . . . , vn ∈ (0,m),

P(V1 6 v1, · · · , Vn 6 vn|max
k

Vk < m) = P(V1 6 v1, · · · , Vn 6 vn)/P(max
k

Vk < m)

=
v1
m
· · · vn

m
.

�

Therefore,

P(Vi > max
k 6=i

Vk|max
k

Vk < m) = P(Zi > max
k 6=i

Zk),

where Z1, . . . , Zn
i.i.d.∼ Uniform(0,m).

The expected revenue corresponding to the English auction is

E(V(n−1)|max
k

Vk < m) = E(Z(n−1)),

where the subscript (n − 1) denotes the (n − 1)-th order statistic, i.e. the second highest number amongst
the n numbers of interest. This expectation can be calculated easily.

Unfortunately, given maxk Vk > m, the joint distribution of V1, . . . , Vn is not simple to calculate. So, for
now we will skip it and just write down the formula for expected revenue:

r = E(V(n−1)|max
k

Vk < m)P(max
k

Vk < m) + E(max
k

β(2)(Vk)|max
k

Vk > m)P(max
k

Vk > m).

How to find a conditional expectation like E(V(n−1)|maxk Vk < m)?

We need to know how to calculate the CDF/PDF of an order statistic. Let X1, . . . , Xn
i.i.d.∼ F with PDF

f . Let X(1) 6 X(2) 6 · · · 6 X(n) be the n order statistics of X1, . . . , Xn. Let F(k) and f(k) be respectively
the CDf and PDF of X(k). Then

F(k)(x) = P(X(k) 6 x) = P(at least k many among the Xj ’s are 6 x)

=

n∑
i=k

P(exactly i many among the Xj ’s are 6 x)

=

n∑
i=k

(
n

i

)
F (x)i(1− F (x))n−i.
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Therefore,

f(k)(x) =
dF(k)(x)

dx

=
d

dx

n∑
i=k

(
n

i

)
F (x)i(1− F (x))n−i

=

n∑
i=k

(
n

i

)
d

dx
[F (x)i(1− F (x))n−i]

=

n∑
i=k

(
n

i

)
[iF (x)i−1f(x)− (n− i)(1− F (x))n−i−1f(x)]

exercise
= n

(
n− 1

k − 1

)
f(x)F (x)k−1(1− F (x))n−k

Example. Suppose Z1, . . . , Zn
i.i.d.∼ Uniform(0,m). Then

f(k)(x) = n

(
n− 1

k − 1

)
1

m

( x
m

)k−1 (
1− x

m

)n−k
.

In particular, for k = n− 1, this becomes

f(n−1)(x) = n

(
n− 1

k − 1

)
1

m

( x
m

)n−2 (
1− x

m

)
.

Therefore,

E(Z(n−1)) =

∫ 1

0

xf(n−1)(x) dx.

Exercise 1. Calculate the above integral explicitly.
Exercise 2. Using the formula derived above for the density of an order statistic, calculate the expected
revenue of a second price auction, when the values are distributed as i.i.d. Exponential(λ).
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