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Abstract

We prove Mill’s ratio inequalities via a scheme that provides increasingly sharper
bounds and unlike other proofs is easy to remember!

1 Introduction

Mill’s ratio for a distribution F with density f is inverse of the hazard rate/survival function,
i.e. F̄ (x)/f(x), where F̄ = 1− F . For the Gaussian distribution a well-known and often used
bound for the Mill’s ratio (due to Gordon (1941)) is

x

1 + x2
· φ(x) < Φ̄(x) <

1

x
· φ(x). (1)

Another variant of this inequality is(
1

x
− 1

x3

)
φ(x) < Φ̄(x) <

1

x
φ(x). (2)

In this note we show that inequalities (1) is part of a series of increasingly sharper inequalities.
The proof is very easy to remember unlike the standard proofs. To get the upper bound in (1)
just integrate the inequality Φ̄(t) > 0 from x to ∞:

0 <

∫ ∞
x

Φ̄(t) dt

= tΦ̄(t)|∞x −
∫ ∞
x

t(−φ(t)) dt

= −xΦ̄(x) + φ(x).
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To get the lower bound, we just integrate the above inequality to get

0 <

∫ ∞
x

[−tΦ̄(t) + φ(t)] dt

= −t
2

2
Φ̄(t)|∞x −

∫ ∞
x

t2

2
φ(t) dt+ ¯Φ(x)

=
x2

2
Φ̄(x)− t

2
(−φ(t))|∞x +

∫ ∞
x

1

2
(−φ(t)) dt+ Φ̄(x)

=
x2

2
Φ̄(x)− x

2
φ(x)− Φ̄(x)

2
+ Φ̄(x

=
1

2
[(1 + x2)Φ̄(x)− xφ(x)].

You see the structure, right? We can integrate the above inequality to obtain a sharper upper
bound

Φ̄(x) <
1

x
· 2 + x2

3 + x2
· φ(x), (3)

and so on. This repeated integration trick is quite easy to remember although it is somewhat
cumbersome to integrate after a few steps. Below we give a systematic approach.

Proposition 1.1. Let X be a random variable (with distribution function F ) and set mk(x) =
E[Xk1X>x]. Assume that E|X|N <∞. Then for all 0 ≤ n ≤ N we have

n∑
k=0

(
n

k

)
mk(x)(−x)n−k ≥ 0.

Proof. Note that the left hand side is just E(X − x)n+ ≥ 0:

E(X − x)n+ = E
n∑

k=0

(
n

k

)
Xk(−x)n−k1X>x

= E
n∑

k=0

(
n

k

)
E[Xk1X>x](−x)n−k

=
n∑

k=0

(
n

k

)
mk(x)(−x)n−k.

To fecilitate calculating mk(x) we have the following recursion.

Proposition 1.2. Suppose E|X|k+1 <∞. Then

mk+1(x) = xmk(x) +

∫ ∞
x

mk(u) du.
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Proof. Note that ∫ ∞
x

mk(u) du =

∫ ∞
x

E(Xk1X>u) du

= E
[
Xk

∫ ∞
x

1X>u du

]
= E[Xk(X − x)1X>x]

= mk+1(x)− xmk(x).

Now let’s compute using Proposition 1.2 for the Gaussian. If X ∼ N(0, 1), then

m0(x) = Φ̄(x)

m1(x) = φ(x)

m2(x) = xφ(x) + Φ̄(x)

m3(x) = x2φ(x) + 2φ(x)

m4(x) = x3φ(x) + 3xφ(x) + 3Φ̄(x)

...

Now n = 1 in Proposition 1.1 gives

m1(x)− xm0(x) > 0,

i.e.
φ(x)− xΦ̄(x) > 0,

which is the upper bound in (1). Taking n = 2 we have

m2(x)− 2xm1(x) + x2m0(x) > 0,

the LHS is
xφ(x) + Φ̄(x)− 2xφ(x) + x2Φ̄(x) = (1 + x2)Φ̄(x)− xφ(x).

So we get the lower bound in (1). Taking n = 3 gives (3), while n = 4 gives

Φ̄(x) ≥ x · 1

1 + x2
· 5 + 6x+ x2

3 + 6x+ x2
· φ(x)

and so on.
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