A scheme for proving Mill's ratio inequalities

Soumendu Sundar Mukherjee

Sepetember 22, 2016

Abstract

We prove Mill's ratio inequalities via a scheme that provides increasingly sharper bounds and unlike other proofs is easy to remember!

1 Introduction

Mill's ratio for a distribution F with density f is inverse of the hazard rate/survival function, i.e. $\bar{F}(x) / f(x)$, where $\bar{F}=1-F$. For the Gaussian distribution a well-known and often used bound for the Mill's ratio (due to Gordon (1941)) is

$$
\begin{equation*}
\frac{x}{1+x^{2}} \cdot \phi(x)<\bar{\Phi}(x)<\frac{1}{x} \cdot \phi(x) . \tag{1}
\end{equation*}
$$

Another variant of this inequality is

$$
\begin{equation*}
\left(\frac{1}{x}-\frac{1}{x^{3}}\right) \phi(x)<\bar{\Phi}(x)<\frac{1}{x} \phi(x) . \tag{2}
\end{equation*}
$$

In this note we show that inequalities (1) is part of a series of increasingly sharper inequalities. The proof is very easy to remember unlike the standard proofs. To get the upper bound in (1) just integrate the inequality $\bar{\Phi}(t)>0$ from x to ∞ :

$$
\begin{aligned}
0 & <\int_{x}^{\infty} \bar{\Phi}(t) d t \\
& =\left.t \bar{\Phi}(t)\right|_{x} ^{\infty}-\int_{x}^{\infty} t(-\phi(t)) d t \\
& =-x \bar{\Phi}(x)+\phi(x) .
\end{aligned}
$$

To get the lower bound, we just integrate the above inequality to get

$$
\begin{aligned}
0 & <\int_{x}^{\infty}[-t \bar{\Phi}(t)+\phi(t)] d t \\
& =-\left.\frac{t^{2}}{2} \bar{\Phi}(t)\right|_{x} ^{\infty}-\int_{x}^{\infty} \frac{t^{2}}{2} \phi(t) d t+\Phi \overline{(x)} \\
& =\frac{x^{2}}{2} \bar{\Phi}(x)-\left.\frac{t}{2}(-\phi(t))\right|_{x} ^{\infty}+\int_{x}^{\infty} \frac{1}{2}(-\phi(t)) d t+\bar{\Phi}(x) \\
& =\frac{x^{2}}{2} \bar{\Phi}(x)-\frac{x}{2} \phi(x)-\frac{\bar{\Phi}(x)}{2}+\bar{\Phi}(x \\
& =\frac{1}{2}\left[\left(1+x^{2}\right) \bar{\Phi}(x)-x \phi(x)\right] .
\end{aligned}
$$

You see the structure, right? We can integrate the above inequality to obtain a sharper upper bound

$$
\begin{equation*}
\bar{\Phi}(x)<\frac{1}{x} \cdot \frac{2+x^{2}}{3+x^{2}} \cdot \phi(x) \tag{3}
\end{equation*}
$$

and so on. This repeated integration trick is quite easy to remember although it is somewhat cumbersome to integrate after a few steps. Below we give a systematic approach.

Proposition 1.1. Let X be a random variable (with distribution function F) and set $m_{k}(x)=$ $\mathbb{E}\left[X^{k} \mathbf{1}_{X>x}\right]$. Assume that $\mathbb{E}|X|^{N}<\infty$. Then for all $0 \leq n \leq N$ we have

$$
\sum_{k=0}^{n}\binom{n}{k} m_{k}(x)(-x)^{n-k} \geq 0
$$

Proof. Note that the left hand side is just $\mathbb{E}(X-x)_{+}^{n} \geq 0$:

$$
\begin{aligned}
\mathbb{E}(X-x)_{+}^{n} & =\mathbb{E} \sum_{k=0}^{n}\binom{n}{k} X^{k}(-x)^{n-k} \mathbf{1}_{X>x} \\
& =\mathbb{E} \sum_{k=0}^{n}\binom{n}{k} \mathbb{E}\left[X^{k} \mathbf{1}_{X>x}\right](-x)^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} m_{k}(x)(-x)^{n-k}
\end{aligned}
$$

To fecilitate calculating $m_{k}(x)$ we have the following recursion.
Proposition 1.2. Suppose $E|X|^{k+1}<\infty$. Then

$$
m_{k+1}(x)=x m_{k}(x)+\int_{x}^{\infty} m_{k}(u) d u
$$

Proof. Note that

$$
\begin{aligned}
\int_{x}^{\infty} m_{k}(u) d u & =\int_{x}^{\infty} \mathbb{E}\left(X^{k} \mathbf{1}_{X>u}\right) d u \\
& =\mathbb{E}\left[X^{k} \int_{x}^{\infty} \mathbf{1}_{X>u} d u\right] \\
& =\mathbb{E}\left[X^{k}(X-x) \mathbf{1}_{X>x}\right] \\
& =m_{k+1}(x)-x m_{k}(x)
\end{aligned}
$$

Now let's compute using Proposition 1.2 for the Gaussian. If $X \sim N(0,1)$, then

$$
\begin{aligned}
& m_{0}(x)=\bar{\Phi}(x) \\
& m_{1}(x)=\phi(x) \\
& m_{2}(x)=x \phi(x)+\bar{\Phi}(x) \\
& m_{3}(x)=x^{2} \phi(x)+2 \phi(x) \\
& m_{4}(x)=x^{3} \phi(x)+3 x \phi(x)+3 \bar{\Phi}(x)
\end{aligned}
$$

Now $n=1$ in Proposition 1.1 gives

$$
m_{1}(x)-x m_{0}(x)>0
$$

i.e.

$$
\phi(x)-x \bar{\Phi}(x)>0
$$

which is the upper bound in (1). Taking $n=2$ we have

$$
m_{2}(x)-2 x m_{1}(x)+x^{2} m_{0}(x)>0
$$

the LHS is

$$
x \phi(x)+\bar{\Phi}(x)-2 x \phi(x)+x^{2} \bar{\Phi}(x)=\left(1+x^{2}\right) \bar{\Phi}(x)-x \phi(x) .
$$

So we get the lower bound in (1). Taking $n=3$ gives (3), while $n=4$ gives

$$
\bar{\Phi}(x) \geq x \cdot \frac{1}{1+x^{2}} \cdot \frac{5+6 x+x^{2}}{3+6 x+x^{2}} \cdot \phi(x)
$$

and so on.

References

Gordon, R. D. (1941). Values of mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. The Annals of Mathematical Statistics, 12(3):364-366.

