
A NOTE ON POISSON THINNING

SOUMENDU SUNDAR MUKHERJEE

Note: If you have comments or questions, feel free to email me at soumendu@berkeley.edu. Thanks
to Professor Jim Pitman for his careful reading of this note and several suggestions that improved
the exposition substantially.

One of the students in one of the discussion sessions of Stat 201A asked me about a more conceptual
explanation of the independence of SN and N−SN in Problem 2(b) of Worksheet #1, and also about
why the assumption N ∼ Poisson(µ) is important. In this note I will attempt to explain these
via the “Poisson approximation of Binomial” heuristic. We will also see that Poisson is actually
characterized by this property.

Roughly speaking, Poisson approximation of Binomial says that count of many unlikely events
follows an approximate Poisson distribution. To be more concrete, suppose that we have n i.i.d.
Bernoulli trials Xi with success probability µ/n. Then if N =

∑n
i=1Xi is the total number of

successes in n trials, we know that N has a Binomial distribution, namely Bin(n, µ/n).

Exercise 1 (Poisson approximation of Binomial). Prove that

P(N = k) =

(
n

k

)(µ
n

)k (
1− µ

n

)n−k n→∞−−−→ e−µµk

k!
.

So, roughly speaking we can think of N as approximately a Poisson random variable with mean
µ.

Coming back to our problem, let us interpret N and SN in this light. Suppose, for a large number
n, we have n i.i.d. Bernoulli trials Xi ∼ Ber(µ/n). Independent of the Xi’s, suppose we have n i.i.d.
Bernoulli trials Yi ∼ Ber(p). Set N =

∑n
i=1Xi. Then, as discussed above, N is approximately a

Poisson(µ) random variable. Now define

SN :=
n∑
i=1

XiYi.

Note that this is essentially a sum of N i.i.d. Ber(p) random variables (to see this note that, by
definition of N , exactly N of the Xi’s are 1, and the rest are 0). So, indeed SN is “approximately”
a sum of Poisson(µ) many i.i.d. Ber(p) trials. Note also that

N − SN =
n∑
i=1

Xi(1− Yi).

Let us now calculate the joint distribution of SN and N − SN . It is obvious that XiYi, Xi(1 − Yi)
and (1−Xi) are jointly Multinomial(1; µp

n
, µ(1−p)

n
, (1− µ

n
)) so that SN , N − SN and n−N are jointly
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Multinomial(n; µp
n
, µ(1−p)

n
, (1 − µ

n
)). Let us do an alternative and more elaborate proof of this fact

here. We have

P(SN = k,N − SN = l)

=
∑

y1,...,yn

P (SN = k,N − SN = l | Y1 = y1, . . . , Yn = yn)× P(Y1 = y1, . . . , Yn = yn).

Now comes the crucial observation: once we know the Yi’s, SN is basically the sum of Xi’s corre-
sponding to those i’s for which Yi = 1, and N − SN is the sum of Xi’s corresponding to those i’s for
which Yi = 0. Thus given the values of Yi’s SN and N − SN depend on disjoint sets of the Xi’s, and
therefore are independent. Moreover, being sums of i.i.d. Bernoulli’s both of them are Binomial:

P (SN = k,N − SN = l | Y1 = y1, . . . , Yn = yn) =

(∑
yi
k

)(µ
n

)k (
1− µ

n

)∑ yi−k

×
(
n−

∑
yi

l

)(µ
n

)l (
1− µ

n

)n−∑ yi−k

=

(∑
yi
k

)(
n−

∑
yi

l

)(µ
n

)k+l (
1− µ

n

)n−k−l
.

Using this we get,

P(SN = k,N−SN = l) =
∑

y1,...,yn

(∑
yi
k

)(
n−

∑
yi

l

)(µ
n

)k+l (
1− µ

n

)n−k−l
×P(Y1 = y1, . . . , Yn = yn).

Exercise 2. Justify the following equality:∑
y1,...,yn

(∑
yi
k

)(
n−

∑
yi

l

)(µ
n

)k+l (
1− µ

n

)n−k−l
× P(Y1 = y1, . . . , Yn = yn)

=
n−l∑
m=k

(
m

k

)(
n−m
l

)(µ
n

)k+l (
1− µ

n

)n−k−l
× P(

∑
Yi = m).

Exercise 3. Noting that
∑
Yi is a Bin(n, p) random variable, and using Exercise 2 show that

P(SN = k,N − SN = l) =
n!

k!× l!× (n− k − l)!

(µp
n

)k (µ(1− p)
n

)l (
1− µ

n

)n−k−l
.

Note that this just says that SN , N − SN and n−N are jointly Multinomial(n; µp
n
, µ(1−p)

n
, (1− µ

n
))

as observed before.

Exercise 4. Conclude that

P(SN = k,N − SN = l)
n→∞−−−→ (µp)k(µ(1− p))l

k!× l!
e−µ = P(N1 = k)× P(N2 = l),

where N1 ∼ Poisson(µp) and N2 ∼ Poisson(µ(1− p)).

This shows that SN and N − SN are approximately independent, at least for large n, and have
approximate Poisson distributions with means µp and µ(1−p) respectively. This gives us a heuristic
justification of why the Poisson distribution is important: it is really the underlying “rare Bernoulli
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trials Xi” which cause the (approximate) independence of SN and N−SN . You may find it interesting
to rephrase all these in the coin tossing language.

Now it turns out that Poisson distribution is the only (non-degenerate) distribution having this
property. To be precise we have the following theorem.

Theorem 0.1. If N is a non-negative integer valued random variable with P(N = 0) < 1 and Xi’s

are i.i.d. Bernoulli(p) random variables independent of N , then SN :=
∑N

i=1Xi is independent of
N − SN if and only if N is Poisson.

Proof. The if part is straightforward and was exactly the content of Problem 2(b) of Worksheet #1.
The proof of the only if part is a couple of simple exercises involving the probability generating
function (PGF). Let φ(z) = E(zN) be the PGF of N.

Exercise 5. Show that the joint PGF of SN and N − SN is given by

G(z1, z2) = φ(pz1 + (1− p)z2).

Now since N and N − SN are supposed to be independent, we must have that

G(z1, z2) = G(z1, 1)G(1, z2),

i.e. φ must satisfy the following functional equation

φ(pz1 + (1− p)z2) = φ(pz1 + (1− p))φ(p+ (1− p)z2),
which looks suspiciously similar to Cauchy’s functional equation.

Exercise 6. Show that g(z) = log φ(z + 1) satisfies Cauchy’s functional equation:

g(z1 + z2) = g(z1) + g(z2)

and conclude that
g(z) = λz,

for some constant λ. Argue why λ > 0, necessarily.

This tells us that φ(z) = eλ(z−1), i.e. N follows a Poisson distribution with mean λ. �

The story does not end here. We may ask if the following “converse” is true: if we knew that N is
Poisson, then for independence of SN and N −SN to hold, we ought to have that Xi’s are Bernoulli.
The answer turns out to be yes! Before we embark on a proof of this fact, let’s derive a general
functional equation for the PGF’s, characterizing independence of SN and N − SN .

Exercise 7. Suppose that Xi’s are non-negative integer valued random variables, i.i.d. with PGF ψ
and N is an independent non-negative integer valued random variable with PGF φ. Then SN and
N − SN are independent if and only if their joint PGF factorizes, i.e.

(1) φ(z2ψ(z1/z2)) = φ(ψ(z1))φ(z2ψ(z−12 )).

Theorem 0.2. Suppose that N is Poisson(λ). Then in order for SN and N − SN to be independent
we must have that X1 is Bernoulli.

Proof. This will again be a series of simple exercises.

https://en.wikipedia.org/wiki/Cauchy's_functional_equation
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Exercise 8. Show using (1) that if SN and N−SN are independent, then ψ must satisfy the following
functional equation

z2ψ(z1/z2) + 1 = ψ(z1) + z2ψ(z−12 )

Write z−12 = y and z1 = x, then show that the above equation can be rewritten as

(2) ψ(xy)− ψ(y) = y(ψ(x)− 1)

We have to solve this functional equation. Since ψ is differentiable, we can instead look at the
derivatives of this equation. (A standard trick, that, in fact, can be used to solve Cauchy’s equation
too. Try it!) We have, after differentiating both sides with respect to y, that

xψ′(xy)− ψ′(y) = ψ(x)− 1.

Plug in y = 1 to conclude that

(3) xψ′(x)− µ = ψ(x)− 1,

where µ := ψ′(1). Now that we have a linear ODE for ψ, we are in business.

Exercise 9. Solve (3) to conclude that X1 ∼ Bernoulli(µ). (You must argue why µ ∈ [0, 1].)

This completes our proof. �

Remark 0.1. One can work with the MGF to allow for a more general X1 (rather than just non-
negative integer-valued X1). The analysis will be exactly similar.


