A NOTE ON FIRST PRICE AUCTION

SOUMENDU SUNDAR MUKHERJEE

Note: If you have comments or questions, feel free to email me at soumendu@berkeley.edu.

The purpose of this note is to derive a formula for Bayes-Nash equilibrium for a first price auction. Suppose there are n bidders with values $V_{1}, \ldots, V_{n} \stackrel{i . i . d .}{\sim} F$, where F is a differentiable CDF with density $f(x)$. Let $\beta:[0, \infty) \rightarrow[0, \infty)$ be a strictly increasing bidding strategy and $\beta_{1}=\cdots=\beta_{n}=\beta$ be a Bayes-Nash equilibrium.

The utility to bidder i when he/she bids $\beta(w)$ is

$$
\begin{aligned}
u\left(w \mid v_{i}\right) & =\left(v_{i}-\beta(w)\right) \mathbb{P}\left(\beta(w)>\max _{j \neq i} \beta\left(V_{j}\right)\right) \\
& =\left(v_{i}-\beta(w)\right) \mathbb{P}\left(w>\max _{j \neq i} V_{j}\right) \\
& =\left(v_{i}-\beta(w)\right) F(w)^{n-1}
\end{aligned}
$$

Therefore,

$$
\frac{\partial u\left(w \mid v_{i}\right)}{\partial w}=\left(v_{i}-\beta(w)\right)(n-1) F(w)^{n-2} f(w)-\beta^{\prime}(w) F(w)^{n-1}
$$

Since β is a Bayes-Nash equilibrium, $w \mapsto u\left(w \mid v_{i}\right)$ is maximized at $w=v_{i}$ for each i; so we must have

$$
\left.\frac{\partial u\left(w \mid v_{i}\right)}{\partial w}\right|_{w=v_{i}}=0
$$

which means that

$$
\left(v_{i}-\beta\left(v_{i}\right)\right)(n-1) F\left(v_{i}\right)^{n-2} f\left(v_{i}\right)-\beta^{\prime}\left(v_{i}\right) F\left(v_{i}\right)^{n-1}=0
$$

for each i. Writing $v_{i}=v$ and rearranging we arrive at

$$
\beta^{\prime}(v) F(v)^{n-1}+(n-1) F(v)^{n-2} f(v) \beta(v)=(n-1) v F(v)^{n-2} f(v)
$$

which is same as

$$
\left(\beta(v) F(v)^{n-1}\right)^{\prime}=(n-1) v F(v)^{n-2} f(v)
$$

Integrating and using the fact that $F(0)=0$ we get

$$
\beta(v) F(v)^{n-1}=(n-1) \int_{0}^{v} t F(t)^{n-2} f(t) d t
$$

which finally gives us

$$
\begin{equation*}
\beta(v)=\frac{(n-1) \int_{0}^{v} t F(t)^{n-2} f(t) d t}{F(v)^{n-1}} \tag{1}
\end{equation*}
$$

Example. Suppose F is the CDF of $\operatorname{Uniform}(0,1)$. Then using the formula above we get

$$
\begin{aligned}
\beta(v) & =\frac{(n-1) \int_{0}^{v} t^{n-1} d t}{v^{n-1}} \\
& =\frac{n-1}{n} v
\end{aligned}
$$

Recall that we worked out the cases $n=2,3$ previously. This reveals the following interesting fact. For large n,

$$
\beta(v)=\frac{n-1}{n} v \approx v .
$$

This implies that for large n first price auction is approximately truthful. Thus for large n, first and second price auctions are approximately the same. As an exercise you can try to prove that for any n the allocation probabilities for first price and second price auctions are the same, and then by revenue equivalence theorem conclude that the expected revenues are also the same.

Exercise. Suppose F is the CDF of Exponential (λ). Find out β using Formula 1.

