1. **Consistency of sample quantiles.**

 Let $Q_F(\alpha) = \inf\{x \mid F(x) \geq \alpha\}$ be the α-th quantile of a CDF F, $\alpha \in (0, 1)$. Suppose that $F(x) > \alpha$ for all $x > Q_F(\alpha)$. Let \hat{F}_n be the empirical CDF of an i.i.d. sample from F. Assuming the classical univariate Glivenko-Cantelli theorem, show that the α-th sample quantile $Q_{\hat{F}_n}(\alpha)$ is a consistent estimator of $Q_F(\alpha)$.

2. **VC dimension of various Boolean function classes.**

 Compute the VC dimensions of the following Boolean function classes:

 (a) $\mathcal{F}_1 = \{1_{(-\infty, t]} \mid t \in \mathbb{R}^d\}$.
 (b) $\mathcal{F}_2 = \{f_t : [-1, 1] \to \mathbb{R} \mid t \in \mathbb{R}\}$, where $f_t(x) = \text{sign}(\sin(tx))$.

3. **Mean and variance of sub-Gaussian variables.**

 Suppose that X satisfies
 \[
 \mathbb{E}e^{\lambda X} \leq e^{\mu t + \sigma^2 t^2} \quad \text{for all } \lambda \in \mathbb{R}.
 \]
 Prove or disprove the following:

 (a) $\mathbb{E}X = \mu$.
 (b) $\text{Var}(X) \leq \sigma^2$.
 (c) Let σ^2_\star be the smallest possible σ^2 such that (\star) holds. Then $\text{Var}(X) = \sigma^2_\star$.